Topic Eight (1.8): Terminating and Recurring Decimals

Introduction Icon.png Introduction

There are two types of decimals:  

Terminating Decimal: a decimal that ends (e.g., 0.25 or 0.5); and  

Recurring Decimal: a decimal that repeats in a pattern forever (e.g., 0.333… or 0.142857142857…).  

The video below explains these two types: 

In this lesson we will look at how to recognise whether a fraction is equivalent to a recurring or a terminating decimal.  


Consolidate Icon.png Warm Up

Decimal Detective  

For each fraction below: 

  1. Predict whether the decimal equivalent will terminate or recur. 
  2. Use a calculator to convert each fraction into a decimal and copy and fill in the table below. Compare the results with your predictions.

Fraction 

Predict: Terminate or Recur? 

Decimal Equivalent 

Terminate or Recur? 

Correct Prediction? 

LaTeX: \frac{5}{2}52
LaTeX: \frac{17}{5}175
LaTeX: \frac{8}{15}815
LaTeX: \frac{9}{20}920
LaTeX: \frac{17}{6}176
LaTeX: \frac{11}{21}1121

Interact Icon.png Working through your course

Watch this excellent video, which discusses the Warm up activity and generalises the results 

Summary 

Step 1: Simplify the Fraction 

Always simplify the fraction to its lowest terms. For example, simplify LaTeX: \frac{6}{15}615 to LaTeX: \frac{2}{5}25.

Step 2: Examine the Denominator 

The behaviour of the decimal depends on the denominator (after simplification). 

  • If the denominator has only the prime factors 2 and/or 5, the decimal will terminate. 
  • If the denominator has any other prime factors, the decimal will recur. 

Examples: 

  1. Terminating Decimals: 
      • LaTeX: \frac{1}{2}12= 0.5; Denominator = 2.
      • LaTeX: \frac{3}{8}38= 0.375; Denominator = .
      • LaTeX: \frac{7}{10}710 = 0.7; Denominator = 2 × 5.

  2.  Recurring Decimals: 

      • LaTeX: \frac{1}{3}13= 0.33333….; Denominator = 3 (not 2 or 5).
      • LaTeX: \frac{2}{7}27= 0.285714285714285714…; Denominator = 7.

      • LaTeX: \frac{5}{11}511= 0.4545454….; Denominator = 11.

 

Copy and complete this table below, which is similar to the warm-up activity, but choosing your own fractions (you can make these as tricky as you wish!).  Use the method described above to predict whether the decimals will terminate or recur, and use a calculator to check your predictions. 

Fraction 

Predict: Terminate or Recur? 

Decimal Equivalent 

Terminate or Recur? 

Correct Prediction? 


 

Optional Activities Icon.png Plenary

This game will help you practise prime factorisation: 

PLAY - Prime factorisation - pairs activity (MyMaths) Links to an external site. [Not available on sample course]


Bridge Icon.png Support activity for this topic

If you need a reminder about how to write a number as a product of its prime factors revisit Topic 1.3. 


Stretch Icon.png Extension activity for this topic

Can you explain why decimals terminate if the denominator has only the prime factors 2 and/or 5?